
Monitoring and Debugging Parallel Software
with BCS-MPI on Large-Scale Clusters∗

Juan Fernández
Departamento de Ingenierı́a y
Tecnologı́a de Computadores

Universidad de Murcia, 30071 Murcia (SPAIN)
juanf@um.es

Fabrizio Petrini, Eitan Frachtenberg
CCS-3 Modeling, Algorithms & Informatics

Los Alamos National Laboratory
Los Alamos, NM 87545 (USA)
{fabrizio,eitanf}@lanl.gov

Abstract
Buffered CoScheduled (BCS) MPI is a novel implemen-

tation of MPI based on global synchronization of all system
activities. BCS-MPI imposes a model where all processes
and their communication are tightly scheduled at a very
fine granularity. Thus, BCS-MPI provides a system that is
much more controllable and deterministic. BCS-MPI lever-
ages this regular behavior to provide a simple yet powerful
monitoring and debugging subsystem that streamlines the
analysis of parallel software. This subsystem, called Mon-
itoring and Debugging System (MDS), provides exhaustive
process and communication scheduling statistics. This pa-
per covers in detail the design and implementation of the
MDS subsystem, and demonstrates how the MDS can be
used to monitor and debug not only parallel MPI applica-
tions but also the BCS-MPI runtime system itself. Addition-
ally, we show that this functionality need not come at a sig-
nificant performance loss.

1. Introduction
Clusters have become a predominant architecture for

high-performance computing in the past decade. At the
time of this writing, many systems in the Top500 list [15]
are clusters, and the ever-increasing demand for comput-
ing capability is driving the construction of ever-larger clus-
ters. For those environments, MPI is the de facto message-
passing standard to build parallel applications. These ap-
plications usually comprise as many processes as available
processors. In turn, each process may have one or more
threads, open files, and pending non-blocking communica-
tion. This composite structure results in a complex global
state which grows in complexity as cluster sizes increase.

∗ This work is partially supported by the Spanish MCYT under grant
TIC2003-08154-C06-03 and the U.S. Department of Energy through
Los Alamos National Laboratory contract W-7405-ENG-36.

Developing, monitoring and debugging parallel MPI ap-
plications is far more complicated than sequential pro-
grams. This difficulty arises not only from the complex
global state of parallel MPI applications but also from
the nondeterministic nature of parallel systems. On the
one hand, processes exchange messages to satisfy data de-
pendencies, and the sequences of messages may vary be-
tween executions (e.g. when using MPI ANY SOURCE).
On the other hand, local Operating Systems (OS) lack
global awareness of parallel applications so that processes
are scheduled independently. The combination of these fac-
tors may lead to highly varying run times [9] or even differ-
ent results [7].

To address this challenge, the research community has
proposed a number of compile-time and run-time tech-
niques [6, 13], and several tools, such as TotalView [14],
that are commercially available. In all these cases, there is
an extra software component that somehow interacts with
the MPI application to either gather data or perform checks
of different nature. In contrast, there is no need of such an
additional piece of software with BCS-MPI [1]. The MDS
is directly derived from the BCS model. Hence, the MDS is
tightly integrated into the BCS-MPI runtime system.

BCS-MPI is based on a methodology for the design
of parallel system software in order to reduce complex-
ity [2, 3]. This methodology relies on two cornerstones:
(1) global control and coordination of all system activ-
ities, and (2) a very small set of efficient and scalable
network-supported primitives. Generally speaking, this ap-
proach tries to better integrate all the nodes by leverag-
ing modern interconnection hardware. The core primitives
represent a common denominator of most system software
components, and thus, constitute the backbone to integrate
all nodes with a single, global OS.

BCS-MPI imposes a global communication model
where communication is tightly controlled at a fine gran-
ularity. In this model, all the user and system-level
communication is buffered and controlled. The entire clus-

ter marches to the beat of a global strobe that is issued
every few hundreds of microseconds. This is reminis-
cent of the SIMD model, with the exception that the
granularity is expressed in time intervals rather than in-
structions. In the intervals between strobes, or time slices,
newly-issued communication calls are buffered until the
next time slice. At every strobe, nodes exchange informa-
tion on pending communication, so that every node has
complete knowledge of the required incoming and out-
going communication for the next time slice. The nodes
then proceed to globally schedule those communica-
tions that will actually be carried out during the time slice,
and proceed to execute them. Moreover, this BSP-like ex-
ecution model not only facilitates monitoring and debug-
ging of parallel jobs but also enables deterministic replay
of parallel applications [4] and transparent fault toler-
ance [12].

This paper provides three primary contributions. First,
we present the software structure of BCS-MPI and the
MDS, which constitutes a powerful tool for monitoring
and debugging parallel MPI applications. BCS-MPI and the
MDS can generate process and communication scheduling
statistics with negligible performance degradation. Second,
we show how to use the MDS to monitor and debug the
runtime system itself as well as regular parallel MPI appli-
cations. Third, we point out the way to achieve determinis-
tic replay of parallel MPI programs with BCS-MPI.

The rest of this paper is organized as follows. Design
and implementation of BCS-MPI are presented in Section 2.
Section 3 studies the functionality and implementation of
the monitoring and debugging system integrated into BCS-
MPI. The overhead incurred by the monitoring and debug-
ging subsystem is characterized in Section 4. Finally, some
concluding remarks are given.

2. BCS-MPI Architecture

BCS-MPI is a novel implementation of MPI that glob-
ally schedules the system activities on all the nodes: a syn-
chronization broadcast message or global strobe is sent to
all nodes at regular intervals or time slices. Consequently,
all the system activities are tightly coupled since they occur
concurrently on all the nodes. Both computation and com-
munication are scheduled and the communication requests
generated by each application process are buffered. At the
beginning of every time slice a partial exchange of commu-
nication requests provides information to schedule the com-
munication requests issued during the previous time slice.
Subsequently, all the scheduled communication operations
are performed.

The BCS-MPI communication protocol is executed al-
most entirely in the network interface card (NIC) [7].
This offloading enables BCS-MPI to overlap communica-

tion with the computation executed on the host CPUs. The
application processes interact directly with threads run-
ning on the NIC. When an application process invokes
a communication primitive, it posts a descriptor in a re-
gion of NIC memory that is accessible to a NIC thread.
Such a descriptor includes all the communication parame-
ters that are required to complete the operation. The actual
communication will be performed by a set of cooperat-
ing threads running on the NICs involved in the commu-
nication protocol. In QsNet, the chosen platform to im-
plement BCS-MPI, these threads can directly read/write
from/to the application process memory space so that no
copies to intermediate buffers are needed. The communica-
tion protocol is divided into microphases within every time
slice and its progress is also globally synchronized, as de-
scribed in Section 2.3. To illustrate how BCS-MPI com-
munication works, two possible scenarios for blocking
and non-blocking MPI point-to-point primitives are de-
scribed below.

2.1. Send/Receive Scenarios

In the blocking scenario depicted in Figure 1(a), a pro-
cess P1 sends a message to process P2 using MPI Send and
process P2 receives a message from P1 using MPI Recv
as follows. (1) P1 posts a send descriptor to the NIC and
blocks. (2) P2 posts a receive descriptor to the NIC and
blocks. (3) The transmission of data from P1 to P2 is sched-
uled since both processes are ready (all the pending com-
munication operations posted before time slice i are sched-
uled, if possible). If the message cannot be transmitted in a
single time slice, then it is chunked and scheduled over mul-
tiple time slices. (4) The communication is performed (all
the scheduled operations are performed before the end of
time slice i+1). (5) P1 and P2 are restarted at the beginning
of time slice i + 2. (6) P1 and P2 resume computation. Note
that the delay per blocking primitive is 1.5 time slices on
average. However, this performance penalty can be allevi-
ated by using non-blocking communication or by schedul-
ing a different parallel job in time slice i + 1. Finally, the
non-blocking scenario shown in Figure 1(b) is similar to the
blocking one. However, in this case, the communication is
completely overlapped with the computation with no per-
formance penalty.

2.2. BCS-MPI Implementation

For quick prototyping and portability, BCS-MPI was
initially implemented for QsNet-based systems as a user-
level communication library, and some typical kernel level
functionalities such as process scheduling are implemented
with the help of dæmons. This user-level implementation
is expected to be somewhat slower than a kernel-level one,

P2

P1

Time slice i

MPI_Recv

Message
Transmission
Time slice i

Global
Message

Scheduling
Time slice i

Computation

Computation

Computation

ComputationIdle

Idle Idle

Idle

NIC1

NIC2

1

2

3

MPI_Send

4

5

5

Time slice i+1 Time slice i+2

DA
TA

6

6

(a) Blocking scenario.

P2

P1

Time slice i

MPI_Irecv

Computation

Computation

NIC1

NIC2

1

2

3

MPI_Isend

4

5

5

Time slice i+1 Time slice i+2

Computation

Computation

MPI_Wait

MPI_Wait

Global
Message

Scheduling
Time slice i

Message
Transmission
Time slice i DA

TA

(b) Non-blocking scenario.

Figure 1. Blocking and non-blocking send/receive scenarios.

though more flexible and easier to use. An overview of the
software structure of BCS-MPI is provided in Figure 2.

The communication library is hierarchically designed on
top of a small set of communication/synchronization prim-
itives, the BCS core primitives, while higher-level primi-
tives are implemented on top of the BCS core. This ap-
proach greatly simplifies the design and implementation of
BCS-MPI in terms of complexity, maintainability and ex-
tensibility. BCS-MPI is built on top of the BCS API by sim-
ply mapping MPI calls to BCS calls. Note that scalability is
enhanced by tightly coupling the BCS core primitives with
the collective primitives provided at hardware level by the
interconnection network.

2.3. Global Synchronization Protocol

The BCS-MPI runtime system globally schedules all the
computation, communication and synchronization activities
of the MPI jobs at every time slice. Each time slice is di-
vided into two main phases and several microphases. The
two phases are the global message scheduling and the mes-
sage transmission. The global message scheduling phase
schedules all the descriptors posted to the NIC during the
previous time slice. A partial exchange of control infor-
mation is performed during the descriptor exchange mi-
crophase (DEM). The point-to-point and collective commu-
nication operations are scheduled in the message scheduling
microphase (MSM) using the information gathered during
the previous microphase. The message transmission phase
performs point-to-point operations, barrier and broadcast
collectives, and the reduce operations, respectively, during
its three microphases.

3. Monitoring and Debugging Parallel Soft-
ware

As described in Section 2.2, the BCS-MPI runtime sys-
tem globally schedules all the computation, communication
and synchronization activities of the MPI jobs. In this way,
BCS-MPI facilitates monitoring and debugging of parallel
software. To this end, BCS-MPI incorporates a monitoring
and debugging module, called Monitoring and Debugging
System (MDS). This module allows monitoring and debug-
ging, using a posteriori data analysis not only for MPI ap-
plications but also for the BCS-MPI runtime system itself.
This NIC-based monitoring ability has a twofold impor-
tance. First, profiling the BCS-MPI API can provide statis-
tics about process scheduling and communication primi-
tives. Second, profiling the NIC threads can produce mean-
ingful statistics for both the communication pattern of ap-
plications and the behavior of the runtime system itself.

In this section, we show the functionality and implemen-
tation of the MDS. Furthermore, we describe how to use
the MDS to monitor and debug the runtime system as well
as real applications. The MDS is logically divided into two
main components, the Main MDS (MMDS) and the Elan
MDS (EMDS). These modules are described and analyzed
in Sections 3.1 and 3.2, respectively. Both modules can be
independently enabled and disabled without compiling or
linking the code by just setting an environment variable to
an specific value. Finally, the performance implications on
the use of the MDS are studied in Section 4. To better un-
derstand these results, Sections 3.1.1 and 3.2.1 give some
insight about the way the MDS collects data.

. . .T T T n-10 1 . . .T T T n-10 1 . . .T T T n-10 1

AP0 AP1 APp-1. . . AP0 AP1 APp-1. . . AP0 AP1 APp-1. . .

BCS Core

BCS API

BCS Core BCS Core

0 1 N-1

. . .

. . .

BCS API Us
er

 S
pa

ce

Us
er

 S
pa

ce

Ke
rn

el
 S

pa
ce

Ke
rn

el
 S

pa
ce

NICNIC

Us
er

 S
pa

ce
Ke

rn
el

 S
pa

ce

NIC

Compute Node Compute Node Compute Node

MPI LIBRARY MPI LIBRARYMPI LIBRARY
BCS API

G
LO

BA
LL

Y
SY

NC
HR

O
NI

ZE
D

Figure 2. BCS-MPI overview.

3.1. Main MDS (MMDS)

The MMDS’ main role is to produce statistics on process
scheduling as well as communication primitives usage, for
any running MPI parallel application on a per-process ba-
sis. To provide this capability, the MMDS can extract dis-
tribution data for computation granularity and communica-
tion overhead, in addition to a summary of the usage of the
BCS-MPI primitives (including the number of invocations,
and the minimum, maximum and average latency). Further-
more, this module can select specific primitives so that the
corresponding latency and size (if applicable) distributions
can be generated as well. The user retains selective con-
trol over each process and metric to be measured, as well as
over the latency and size resolution.

3.1.1. Implementation. The MMDS composes part of the
BCS-MPI API and as such is executed by the application
processes running in the main processor.

To assemble the computation granularity and commu-
nication overhead distributions, every application process
uses four data structures: a computation granularity counter,
a communication overhead counter, a computation granu-
larity array to store the computation granularity distribution,
and a communication overhead array to store the commu-
nication overhead distribution. Every time a blocking BCS
primitive is invoked, the calling process updates the com-
putation granularity array using the computation granular-
ity counter, obtains a new time stamp for the communica-
tion overhead counter, and blocks. Once the application pro-
cess is awoken, the process obtains a new time stamp for
the computation granularity counter and updates the com-
munication overhead array using the communication over-
head counter. Thus, the sum of all the points belonging to
both distributions is approximately equal to the total run
time of the application. A simple scenario, which illustrates
how the MMDS works, is shown in Figure 3. This sce-
nario comprises two processes, P1 and P2, running a ping-
pong test for a single iteration. At time t0, process P2 in-

vokes MPI Recv which, in turn, calls bcs recv. This func-
tion sets the communication overhead counter (the counter
is assigned t0). Once the process P2 is awakened, at time t1,
a new time stamp is obtained to compute the current com-
munication overhead point, t1 - t0 (the value of the commu-
nication overhead counter), and reset the computation gran-
ularity counter which is assigned t1. Next time P2 invokes
a blocking primitive, MPI Send in this case, a time stamp
is again used to compute the current computation granular-
ity point, t2 - t1 (the value of the computation granularity
counter), and reset the communication overhead as well.

To assemble the latency and size (if applicable) distribu-
tions for every single primitive, we follow the very same ap-
proach as before. However, in this case, the counters and ar-
rays are always used regardless of whether the primitive is
blocking or not.

Every process dumps each individual distribution to a
different file at the end of its execution. Consequently, the
impact of the MDS on the execution of the MPI parallel job
is minimal. On the one hand, the overhead incurred by the
MMDS is negligible (as shown in Section 4). On the other
hand, the amount of memory required to store the MDS data
structures depends on the desired resolution, that is, the finer
the resolution, the higher the MDS memory requirements
will be. However, the memory required by the MMDS is no
more than a few megabytes in the worst case which is typi-
cally easy to accommodate in contemporary systems.

3.2. Elan MDS (EMDS)

The EMDS monitors the activity of the NIC threads be-
longing to the BCS-MPI runtime system. This module pro-
vides both global statistics on the synchronization proto-
cols and local ones regarding process and communication
scheduling on a per-node basis. Table 1 summarizes the
global and local metrics, respectively. LTRi refers to the
time to complete the execution of routine i where routine
i is some internal routine related to the resource schedul-

P2

P1

Time slice i

MPI_Recv

Message

Transmission

Time slice i

Global

Message

Scheduling

Time slice i

Computation Computation

Computation

Idle Idle

NIC1

NIC2

MPI_Send

Time slice i+1 Time slice i+2

D
A
T
A

Time slice i+3

MPI_Send

Message

Transmission

Time slice i

Global

Message

Scheduling

Time slice i

Computation

Computation

Computation

ComputationIdle

Idle Idle

Idle

MPI_Recv

D
A
T
A

Time slice i+4 Time slice i+5

t2 t3

Computation Idle Idle

t0 t1
Communication
 Overhead

Communication
 Overhead

Computation
 Granularity

Figure 3. MMDS Time Statistics Implementation

ing process performed by the NIC. This data facilitates the
profiling of how communication time is spent, allowing the
optimization and tuning of the runtime system. Given that
the global synchronization protocol splits time into time
slices, all of them are expressed as a function of a time
slice number. Note that this approach enables us to track the
progress of specific communication operations through dif-
ferent nodes using discrete events. In all cases, nodes and
metrics can be selectively enabled and disabled, and it is
possible to adjust the measurement resolution.

Figure 4 illustrates the meaning of both local and global
EMDS statistics. The only difference is the NIC thread
which gathers the data. A thread running on the manage-
ment node is in charge of the global EMDS statistics while
the local EMDS statistics are obtained by different threads
running on each node. For example, GTDEM, gathered by
the thread running on the management node, represents the
time to complete the DEM microphase in all nodes. In the
meantime, LTDEM, gathered by the threads running on
each node, corresponds to the time to complete the DEM
microphase on every node. Given that all nodes are synchro-
nized between microphases, the largest value for a particu-
lar figure at any node constitutes a lower bound for the cor-
responding global figure. Finally, we note that the GTTS
metric may be shorter than the time slice value imposed
to the system if the Message Scheduling Microphase pre-
maturely ends because no communications are performed.
Moreover, the GETTS metric allows the verification that the
master node signals all nodes at regular intervals equal to
the chosen time slice value without measurable delays.

3.2.1. Implementation. The EMDS is integrated into the
BCS core and as such is executed by the Elan Thread Pro-
cessor [8, 10]. Therefore, all the data structures used by
the EMDS need to be stored in Elan3 memory [10], un-
like the MMDS. PCI bus transactions could introduce un-
predictable delays which negate the BCS-MPI philosophy

of implementing a deterministic system. The global and lo-
cal EMDS statistics are expressed in terms of the time slice
number. Therefore, unlike the MMDS, the memory require-
ments grow linearly with the time slice number. Since the
amount of memory in the Elan3 NICs used here is limited
to 64MB, the EMDS must be carefully designed to fit into
Elan3 memory, along with the thread code, and avoid over-
flow situations. To this end, both global and local EMDS
statistics can only be active during a period of time equiva-
lent to ten thousand time slices, e.g. 5 seconds for a 500 µs
time slice. The mechanism to keep the statistics up-to-date
is similar to the one explained before. Every node dumps
both the local and the global EMDS statistics to a file once
the BCS-MPI runtime system is shut down. Even though
the overhead incurred while updating the EMDS data struc-
tures is quite low, it is higher than in the MMDS case, due
to the small TLB and cache sizes in the Elan3. This small
size entails that access to the EMDS data structures may
pollute either or both tables. Finally, it is worth noting that
time measurements, for both the MMDS and the EMDS,
are highly accurate. All the counters and the individual dis-
tribution points are 64-bit values so that the overflow of any
of them is not likely. Moreover, to get the time stamps, the
elan3 clock function [11] is used. This function uses the
Elan hardware clock in order to provide the current time,
since some arbitrary time in the past, expressed in nanosec-
onds as a 64-bit value.

3.3. Monitoring and Debugging the BCS-MPI
Runtime System

In this section we show how to use the MDS to moni-
tor and debug the behavior of the BCS-MPI runtime sys-
tem itself. To do that, let’s assume a simple MPI bench-
mark which barrier synchronizes every 1.9ms. Given the
BCS-MPI execution model explained in Section 2.3, if the

Global Metric Meaning
GETTS Global Elapsed Time from the previous Time Slice
GTDEM Global Time to complete the DEM microphase
GTMSM Global Time to complete the MSM microphase
GTTS Global Time to complete the Time Slice
USRTS Unsuccessful Sync Retries before the previous Time Slice is over
USRDEM Unsuccessful Sync Retries before the DEM microphase is over
USRMSM Unsuccessful Sync Retries before the MSN microphase is over

Local Metric Meaning
LETTS Local Elapsed Time from the previous Time Slice
LTDEM Local Time to complete the DEM microphase
LMSM Local Time to complete the MSM microphase
LTTS Local Time to complete the Time Slice
NP2PDEM Number of P2P descriptors processed in the DEM microphase
NP2PMSN Number of scheduled P2P operations in the MSN microphase
NCOLLMSN Number of collectives processed in the DEM microphase
NCOLLMSN Number of scheduled collectives in the MSN microphase
BPTS Blocked processes during the current Time Slice
LTRi Local Time to complete the execution of Routine i

Table 1. EMDS Statistics.

Global

Message

Scheduling

Phase

Message

Transmission

Phase

NIC

Time slice i

Descriptor

Exchange

MicroPhase

(DEM)

Message

Scheduling

MicroPhase

(MSM)

Point-to-point

MicroPhase

(PM)

Broadcast

and Barrier

MicroPhase

(BBM)

Reduce

MicroPhase

(RM)

Global

Message

Scheduling

Phase

Message

Transmission

Phase

Time slice i+1

Descriptor

Exchange

MicroPhase

(DEM)

Message

Scheduling

MicroPhase

(MSM)

Point-to-point

MicroPhase

(PM)

Broadcast

and Barrier

MicroPhase

(BBM)

Reduce

MicroPhase

(RM)

t0

GTDEM

t1

GTMSN

t3

GTTS

t2 t4

GETTS

Figure 4. EMDS Time Statistics Implementation

BCS-MPI runtime system globally synchronizes every 250
µs, the correct execution of the benchmark implies that: (1)
all the nodes in the system synchronize every 250 µs, (2) ev-
ery process invokes MPI Barrier every nine time slices, (3)
the BCS-MPI runtime system schedules a barrier every nine
time slices. To verify these assumptions, we enabled the
MDS and ran this experiment for 10, 000 iterations. We ac-
tivated the EMDS from time slice 7500 to time slice 12500.
Figure 5 shows the GETTS as a function of the time slice
number. The length of the time slices varies between 250
and 270 µs, guaranteeing that all nodes are synchronized
at regular intervals. Figure 6 shows NDEM and NCOLL as
a function of the time slice number respectively for a ran-
domly chosen node. As expected, these results satisfy as-
sumptions 1 through 3 with negligible deviations from the
expected values. This suggests that a small set of bench-

marks, like the one used in this section, would constitute a
powerful tool to test and debug the BCS-MPI runtime sys-
tem. In these simple cases, the BCS-MPI execution model
enables performance prediction in order to validate the dy-
namic behavior of the runtime system. Moreover, the BCS-
MPI implementation reduces non-determinism since most
of the tasks are performed by the NIC which is immune to
the effect of computational noise [9].

3.4. Monitoring and Debugging Parallel MPI Ap-
plications

The previous section describes how to take advantage of
the MDS to monitor and debug the BCS-MPI runtime sys-
tem. The same approach is useful for monitoring and debug-
ging actual applications. To demonstrate this, we use SAGE,

 0

 0.5

 1

 1.5

 2

 10000 10050 10100 10150 10200 10250 10300 10350 10400 10450 10500

Nu
m

be
r o

f p
ro

ce
ss

ed
 c

ol
le

ct
ive

s
in

 th
e

DE
M

 m
icr

op
ha

se

Time Slice Number

(a) Number of processed collectives in the DEM microphase.

 0

 0.5

 1

 1.5

 2

 10000 10050 10100 10150 10200 10250 10300 10350 10400 10450 10500

Nu
m

be
r o

f s
ch

ed
ul

ed
 c

ol
le

ct
ive

s
in

 th
e

M
SN

 m
icr

op
ha

se

Time Slice Number

(b) Number of scheduled collectives in the MSN microphase.

Figure 6. Collective statistics gathered by the EMDS.

 0

 50

 100

 150

 200

 250

 300

 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000 12500

Ti
m

e
(m

icr
os

ec
on

ds
)

Time Slice Number

Figure 5. Global Elapsed Time from previous
Time Slice

a hydrodynamics code widely used at LANL [5], to illus-
trate how the MDS can monitor and debug real applications.
In Table 2, the summary generated by the MMDS when ex-
ecuting SAGE is shown. This summary provides general in-
formation about all the BCS-MPI primitives used by SAGE
during its execution. By using these data, it is possible to
identify either bottlenecks or hot-spots in the communica-
tion pattern of the application. In such cases, a top-down
approach, like the one described in [9], must be used un-
til the primitive which causes the functional or performance
anomaly is identified. After that, the MDS can be used to
get further details about the problematic primitive by gener-
ating a latency distribution and a size distribution, if appli-
cable. Finally, the actual runtime for this run was 115.023
seconds while the total computation time plus the total com-

munication time is 115.027 seconds. This gap represents an
error of less than 0.01%, indicating the high level of accu-
racy of the MDS.

4. Performance Evaluation

All experiments were conducted on a 64-node Alpha-
based cluster. Each node is an Alphaserver ES40 equipped
with four EV68 processors and 8 GB of memory. Nodes are
interconnected with a Quadrics QsNet network and QM-
400 Elan3 network interface cards [8, 10, 11]. As shown in
Section 3, the MDS can be a powerful tool for monitoring
and debugging MPI applications, as well as the runtime sys-
tem itself. As with any similar tool, the MDS incurs an op-
erational overhead. In this section, we study the overhead
incurred by the MMDS and the EMDS while running sci-
entific applications. Table 3 shows the runtime of SAGE on
64 processors for two different input decks, timing c.input
and timing h.input. The MMDS overhead is less than 0.5%
for both input decks. The EMDS overhead is only slightly
higher than in the MMDS case due to the small TLB and
cache sizes in the Elan3.

5. Concluding Remarks

BCS-MPI strives to achieve scalable performance
through global scheduling of communication by logi-
cally orchestrating the activities in a large-scale system
in deterministically reproducible, global steps. By lever-
aging the global coordination and the parallel execution
of the BCS-MPI runtime system in the network inter-
face card, we were able to develop an innovative mon-
itoring and debugging system (MDS) that can profile

Primitive Min(ms) Max(ms) Total(ms) Count Average(ms)
MPI Isend 0.588 16.576 21026.554 4396 4.783
MPI Recv 0.415 0.699 10.469 19 0.551
MPI Irecv 0.736 16.644 24280.771 5617 4.323
MPI Probe 0.123 0.816 36.923 136 0.271
MPI Waitall 0.071 13.688 2481.633 2140 1.160
MPI Barrier 0.097 0.639 0.736 2 0.368
MPI Bcast 0.355 178.988 348.312 312 1.116
MPI Allreduce 0.366 24.753 18906.279 7025 2.691
MPI Allgather 1.796 41.121 500.593 45 11.124
MPI Alltoall 14.373 27.621 645.445 34 18.984
Comp Granularity 0.001 2515.857 92440.640 9771 9.461
Comm Overhead 0.068 178.953 22587.242 9770 2.312

Table 2. SAGE statistics with the timing h input deck.

Input deck MDS Disabled MMDS MMDS EMDS EMDS
Runtime Runtime Overhead Runtime Overhead

timing h.input 114.604s 115.023s 0.36% 116.102s 1.31%
timing c.input 193.202s 193.345s 0.07% 193.419s 0.11%

Table 3. Overhead incurred by the MMDS and the EMDS while running SAGE.

with extreme accuracy the execution of an MPI pro-
gram and of the run-time software itself with negligible
overhead. We have shown how the MDS profiling capa-
bilities can be used to monitor, debug and optimize both
system software and user applications. The BCS-MPI exe-
cution model not only facilitates monitoring and debugging
of parallel jobs but also paves the way to achieve deter-
ministic replaying of parallel applications and possibly,
transparent fault tolerance.

References
[1] J. Fernández, E. Frachtenberg, and F. Petrini. BCS-MPI: A

New Approach in the System Software Design for Large-
Scale Parallel Computers. In Proceedings of IEEE/ACM
Conference on SuperComputing, Phoenix, AZ (USA), Nov.
2003.

[2] J. Fernández, E. Frachtenberg, F. Petrini, K. Davis, and
J. C. Sancho. Architectural Support for System Software
on Large-Scale Clusters. In Proceedings of International
Conference on Parallel Processing, Montreal, Canada, Aug.
2004.

[3] E. Frachtenberg, F. Petrini, J. Fernández, S. Pakin, and
S. Coll. STORM: Lightning-Fast Resource Management. In
Proceedings of IEEE/ACM Conference on Supercomputing,
Baltimore, MD (USA), Nov. 2002.

[4] C.-H. Hong, G. On, B.-S. Lee, and D. H. Chi. Replay for De-
bugging MPI Parallel Programs. In Proceedings of the 2

th

MPI Developer’s Conference, Notre Dame, IN (USA), July
1996.

[5] D. J. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasser-
man, and M. Gittings. Predictive Performance and Scalabil-
ity Modeling of Large-Scale Applications. In Proceedings

of ACM/IEEE Conference on SuperComputing, Denver, CO
(USA), Nov. 2001.

[6] G. Luecke, H. Chen, J. H. James Coyle, M. Kraeva, and
Y. Zou. MPI-CHECK: a tool for checking Fortran 90 MPI
programs. Concurrency and Computation: Practice and Ex-
perience, 15(93):93 – 100, 2003.

[7] A. Moody, J. Fernández, F. Petrini, and D. K. Panda. Scal-
able NIC-Based Reduction on Large-Scale Clusters. In
Proceedings of IEEE/ACM Conference on SuperComputing,
Phoenix, AZ (USA), Nov. 2003.

[8] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachten-
berg. The Quadrics Network: High-Performance Clustering
Technology. IEEE Micro, 22(1):46–57, January/February
2002.

[9] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of
the Missing Supercomputer Performance: Achieving Opti-
mal Performance on the 8192 Processors of ASCI Q. In
Proceedings of ACM/IEEE Conference on SuperComputing,
Phoenix, AZ (USA), Nov. 2003.

[10] Quadrics. Elan Reference Manual. Quadrics Supercomput-
ers World Ltd., 1999.

[11] Quadrics. Elan Programming Manual. Quadrics Supercom-
puters World Ltd., Nov. 2003.

[12] J. C. Sancho, F. Petrini, G. Johnson, J. Fernández, and
E. Frachtenberg. On the Feasibility of Incremental Check-
pointing for Scientific Computing. In Proceedings of Par-
allel and Distributed Processing Symposium, Santa Fe, NM
(USA), Apr. 2004.

[13] J. S. Vetter and B. R. de Supinski. Dynamic Software
Testing of MPI Applications with Umpire. In Proceedings
of IEEE/ACM Conference on SuperComputing, Dallas, TX
(USA), November 2000.

[14] www.etnus.com. TotalView.
[15] www.top500.org. Top500 Supercomputing Sites, 2004.

